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An unsteady supersonic flow of a nonviscous gas with a Mach number M = 3 in a step-shaped channel has
been calculated. The accuracy of the forecasts made has been analyzed on the basis of the Roe dissipation
model and the advective upwind splitting method with the use of convective schemes of the second and third
orders of accuracy and algorithms for approximation of flows. Triangular and polyhedral grids have been
tested. The mechanism of formation of an artificial physical instability on grid structures with a local-gradient
adaptation has been considered. It is shown that the existence of a singular point — a right corner — in the
computational region causes a large phase change in the evolution of the flow.
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Introduction. Developers consider the universal gas-dynamic FLUENT and CFX packages as flexible and ef-
ficient instruments for numerical simulation of hydrodynamical and thermophysical processes, including those occurring
in subsonic and transonic flows of viscous and nonviscous gases. In many respects this is explained by the fact that
the use of nonstructured finite-element grids allows one to investigate the gas dynamics and the heat exchange in mul-
tidimensional regions of arbitrary geometry. Even though universal packages, such as the FLUENT package, practically
do not impose limitations on the shape of an object being calculated, they call for the use of grids with cells in a
quantity allowed by the available computational resources to provide an acceptable accuracy of numerical forecasts.
This problem arises as a rule due to the necessity to represent different-scale complex flows on inadequate grid struc-
tures which, in many cases, is not taken into account by the developers of packages in full measure.

Formulation of the Problem. In the present work, which is a logical continuation of [1], numerical schemes
of different orders of approximation and grid structures realized with the use of the FLUENT and CFX packages were
analyzed by the example of calculation of a compressible flow of an ideal gas in a region of fairly simple geometry
in which, however, nonstationary multielement shock-wave interactions can occur. The algorithms of the Roe splitting
of flows [2], the advective upwind splitting (AUS) method [3, 4], and the monotone centered upwind scheme for con-
servation laws (MCUSCL) [5] were tested with the use of the artificial compressibility method as well as triangular
and polyhedral grids.

For more than fifty years the problem on a supersonic flow with a Mach number M = 3 in a channel with a
step has been used as a good test for comparison of the accuracy of different computational schemes. This test was
published for the first time by Emery [6], then was repeatedly represented by Van Leer [5], and was popularized most
widely by Woodward and Colella [7]. At this point, of special interest is the degree of resolution of complex gas-dy-
namic phenomena, such as nonstationary interactions of compression and rarefaction waves as well as Mach disks aris-
ing in the process of irregular interactions of waves with each other and with walls, with the use of a numerical
algorithm selected.

The computational region represented a channel with a sharp narrowing, a unit height at the input, a length
of 3, and a step of height 0.2 located at a distance of 0.6 from its left unput boundary.
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Brief Description of Numerical Methods. A peculiarity of the present problem is the existence of a singular
point — a corner of a step, a rarefaction center. It was shown in [5–7] that a numerical simulation of a flow in this
formulation leads to significant errors in its representation in the neighborhood of the singular point. In this case, a
pseudoboundary layer appears above the step, with which shock waves interact. As a consequence, the pattern of the
flow changes depending on the computational grids and numerical methods used [5–7]. Some results of determining
the sensitivity of the indicated solution to the singular point are presented below.

In [1], a numerical investigation was performed in "forehead," i.e., in the computational region with a right
corner. However, in the present work, to avoid numerical errors associated with the effect being considered, we
changed the right corner for a facet with a rounding of radius 0.01. It should be noted that this method of solving the
problem is not unique; for example, in [7] the density of the fluid in the cells positioned near the singular point was
determined in such a way that the entropy field retained nonseparated. At the same time the mass velocity was cor-
rected using the law of conservation of the kinetic energy and enthalpy in each time step.

The system of Euler equations for a perfect gas with an adiabatic index γ = 1.4 was solved by the finite-vol-
ume method on the basis of the artificial-compressibility procedure [8]. The serviceability and accuracy of numerical
algorithms are conveniently estimated with the use of a set of parameters that, in the initial state, have unit values.
Thus, in this case,

ρ = 1.4 ,   ux = 3 ,   uy = 0 ,   p = 1 ,   γ = 1.4 . (1)

The indicated parameters determine the local velocity of sound a = √⎯⎯⎯⎯⎯γp ⁄ ρ  = 1; in this case, the Mach number be-
comes equal to the velocity of the incident flow M = ux

 ⁄ a = ux.
The flows through the faces of the control volumes were approximated on the basis of the Roe dissipation

model [2] or by the modified AUS method of splitting [3, 4]. In the second case, the resulting Mach number, used
for interpolation of the convective components of nonviscous flows, in each finite volume was calculated by the char-
acteristic method. It should be noted that the AUS method offers a number of advantages over the Roe dissipation
model: the contact discontinuities are calculated exactly, the scalar quantities remain positive, and nonphysical oscilla-
tions arising at the contact discontinuities are not reproduced.

In addition to the standard upwind scheme of the second order of approximation [9], the MCUSCL scheme
of the third order of approximation [5] was used for integration of the convective components of the Euler equations.
This scheme was proposed for the first time by Van Leer and represents a conjugation of the upwind scheme of the
second order of approximation and the central-difference scheme. In contrast to the square Leonard QUICK scheme [9]
that is mainly used with structured grids, the MCUSCL scheme can be applied to the measurements with arbitrary
nonstructured grid structures. Potentially the indicated scheme allows one to substantially improve the accuracy of in-
tegration of the convective terms of equations over the space; however, this scheme, in its present form realized with
the v6.3.26 FLUENT package [9], does not impose any limitations on flows. As a consequence, if a flow has any fea-
tures, e.g., contact discontinuities, the indicated scheme begins to reproduce numerical errors caused by the nonmono-
tony of the solution. This effect is demonstrated in the present work.

The integration of the quantities being investigated with respect to the physical time was performed using the
reverse Eulerian method [10] of the second order of approximation, and the integration of these quantities with respect
to the pseudotime was carried out by the implicit marching method on the basis of the artificial compressibility [8].

The set of parameters (1) represents the input boundary conditions. The conditions of absence of flow were
set for the impenetrable regions of the step-shaped channel. It was assumed that the parameters of the flow at its out-
put cross section are not significant because the fluid flows through this section with a supersonic velocity. The initial
conditions were as follows: the step-shaped channel is fully filled with a gas whose parameters are identical to the pa-
rameters of the fluid at its input boundary, which corresponds to an abrupt start of the motion of the channel with a
supersonic velocity. The Courant number is taken to be equal to 0.8, and the numerical simulation of the nonstationary
process is carried out with a fixed time step of 0.0025, which is reasonable in the case where an implicit scheme of
the second order of approximation with respect to time is used. Note that the time step close in order and was equal
to 0.00272 was used in [7]. Twenty local iterations were carried out in each step of the temporal integration.
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In [1], fairly close results were obtained with the use of different-topology (triangular and quadrangular)
grids, which allows the conclusion that the forecasts made by us are reliable to some degree and the computational
algorithm used is adequate. In the present work, the accuracy of the numerical estimations was determined using the
nonstructured triangular (Fig. 1a) and polyhedral (Fig. 1b) grids constructed on the basis of the triangular grid with
elements of uniform size equal to 0.0125; these grids are equivalent to some degree to the structured grid used in
[7] with elements of size 1 ⁄ Δx = 1 ⁄ Δy = 1 ⁄ 80. Compared to the grid used in [1], the number of nodes in the grid
used in the present work was increased from 8 to 20 thousand. An insignificant bunching of the grid nodes was
made in the region of the rounding of the right corner. The triangular grid was also used as the initial grid for cal-
culations with a dynamic local adaptation [11, 12] to the density gradient with two levels of fragmentation. In the
process of solving the problem, the number of nodes was no more than 400 thousand; in this case, the fragmenta-
tion and bunching thresholds were taken to be equal to 0.01 and 0.02, respectively. The restructuring was carried out
with an interval in five time steps.

Analysis of the Results Obtained. The accuracy of the solutions obtained was estimated by the following
structured elements of the flow: the spatial position of the triple point — the point of intersection of the upper Mach
disk with the leading shock wave, the length of the upper Mach disk, and the interaction of the shock waves with the
upper walls of the step and the channel. In this case, the solution obtained in [7] was postulated as a standard solu-
tion. We used a field of isochores to analyze the nonmonotonicity of this solution and the decimal logarithm for its
better visualization. In the problem being considered, the density is a parameter that is most difficult to calculate be-
cause of the existence of a weak contact discontinuity — a Mach disk, arising as a result of the interaction of the
leading arched shock wave with the upper wall.

Fig. 1. Fields of the decimal logarithm of the isochores at the instant of time t =
4 obtained on the static triangular (a) and polyhedral (b) grids with the use of
the gas-dynamic CFX (c) and FLUENT (d–h) packages as well as different
combinations of difference schemes and algorithms of approximation of flows:
the model of Roe dissipation and the standard convective scheme of the second
order of accuracy (e), the model of Roe dissipation and the MCUSCL method
(f), the AUS method and the standard convective scheme of the second order of
accuracy (g), the AUS and MCUSCL methods (h). A step of the isolines is
equal to 1 ⁄ 30, and the values of the density are varied from −1 to 1.
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We will briefly analyze the solutions obtained using the stationary triangular grid (Fig. 1a) and polyhedral
grids (Fig. 1b). Figure 1c and d shows the fields of the decimal logarithm of the isochores at the instant of time t =
4, obtained with the use of the CFX [13] (Fig. 1c) and FLUENT packages (Fig. 1d) on the polyhedral grids. A dis-
tinguishing characteristic of these two solutions is the absence of nonmonotonicity. The average disagreement between
the standard solution [7] and the solution obtained in the topology of all the elements of the flow did not exceed 3%.
Further analysis of Fig. 1 shows that the use of the MSUSCL scheme of the third order of approximation gives a so-
lution with a large nonmonotonicity (Fig. 1f and h) as compared to the standard scheme of the second order of ap-
proximation (Fig. 1e and g). In turn, the existence of a nonmonotonicity in the solution leads to a fairly strong
distortion of the topology of the flow: 1) in Fig. 1f, the length of the Mach disk is overstated by 24% and the triple
point is displaced by 8% to the left in the longitudinal direction; 2) in Fig. 1h, the length of the Mach disk is under-
estimated by 9% and the triple point is shifted by 9% to the right in the longitudinal direction; in this case, the points
of interaction of the oblique shock waves with the upper walls of the step and the channel are shifted by 8 and 6%
respectively. The solutions obtained using the standard upwind scheme of the second order in combination with the
AUS method have a much smaller nonmonotonicity (Fig. 1e and g) even though they represent the topology of the
flow with certain errors. For example, the length of the Mach disk represented in Fig. 1e is overstated by 12% and
the triple point in Fig. 1g is shifted by 6% to the right.

It should be noted that the flow being considered has some nonphysical features arising due to the numerical
errors. Among them are the appearance of a weak rarefaction wave arising as a result of the interaction of a fan of
waves propagating from the corner of the step with its upper wall and the development of the Kelvin–Helmholtz in-
stability propagating from the triple point along the upper wall of the channel. Even though the last mentioned insta-
bility has a physical origin, it is most likely due to the computational circumstances in this case. The main reason for
the appearance and development of this instability is that small oscillations of the entropy are generated by the numeri-

Fig. 2. Results of the numerical simulation with a dynamical local-gradient ad-
aptation obtained in the computational regions with a filleted right corner (a) at
the instant of time t = 4 (c, d) and with a right corner (b) at the instant of time
t = 4 (e, f) and t = 7 (g, h): the fields of isolines of the decimal logarithm of
isochores (c, e, g) and the fields of isolines of the entropy function A (d, f, h).
A step of the isolines is equal to 1 ⁄ 30, and the values of the density and the
entropy function are varied from −1 to 1 and from 0.3 to 1.7 respectively.
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cal schemes at the triple point. The indicated features of the flow are independent of both the computational grids and
different numerical algorithms.

The further improvement of the solution and investigation of the above-listed features of the flow were carried
out with the use of adopted grids (Fig. 2a and b). By analogy with [7], we analyzed the mechanism of the instability
with the use of the so-called adiabatic index A = p ⁄ ργ representing an entropy function. The influence of the numeri-
cal errors, arising due to the existence of the singular point in the computational region, on the evolution of the flow
is presented in Fig. 2e and h. Analysis of the entropy field (Fig. 2f and h) shows that the existence of a singularity
leads to the formation of a pseudoboundary layer at the upper wall of the step. The interaction of the shock-wave
structure with this boundary layer causes a delay (a phase shift) in the development of the flow. Figure 2e–h presents
data obtained for the computational region with a right corner: the fields of the isolines of the decimal logarithm of
the isochores (Fig. 2c, e, and g) and the entropy (Fig. 2d, f, and h) at the instants of time t = 4 and 7. It is seen that
the phase error is equal to t � 3.

A Kelvin–Helmholtz instability develops on the gr id structures with a local gradient-dynamic adaptation
(Fig. 2a and b) independently of the existence of a singular ity in the computational  r egion. Analysis of the
entropy field (Fig. 2d, f, and h) shows that this instability is due to the small oscillations of the entropy in the
zone of the contact discontinuity or iginating from the tr iple point — the point of inter section of the upper  Mach
disk with the leading shock wave (Fig. 2b and c) — and propagates along the upper  wall of the channel.

Conclusions. Convective schemes of the second and third order  of approximation and algor ithms of split-
ting of flows (the Roe dissipation model and the AUS method), realized on the basis of the finite-volume
procedure of artificial compressibility on different grid structures, have been tested by the example of a supersonic
flow in a step-shaped channel. It is shown that:

a) the solutions obtained on the polyhedral grids are nonmonotone to the least degree and correspond most
exactly (the disagreement is �3%) to the standard solution (all other things being equal);

b) in the case where the flow in the cells positioned near the computational region with a singular point
is not corrected (the right angle is not rounded), in this region there arises a large phase change (t � 3) in the
evolution of the flow as a result of the interaction of the shock waves with the pseudoboundary layer  at the upper
wall of the step;

c) a fur ther  increase in the resolution of the computational gr ids or  the use of a local dynamic adaptation
leads to the appearance of a hydrodynamic Kelvin–Helmholtz instability, ar ising mainly due to the small oscilla-
tions excited in the entropy field at the triple point.

This work was carried out with financial support from the Russian Foundation for Basic Research (projects
No. 08-08-90001 and 08-01-00059).

NOTATION

a, local velocity of sound; A, entropy function or "numerical noise;" M, Mach number; p, pressure; t, time; ux,
longitudinal component of the velocity vector; uy, transverse component of the velocity vector; γ, adiabatic index; Δx,
Δy, dimension of the structured computational grid along the horizontal and vertical directions, respectively; ρ, density.

REFERENCES

1. S. A. Isaev and D. A. Lysenko, Testing of the FLUENT package by the example of a supersonic flow in a
step-shaped channel, Inzh.-Fiz. Zh., 77, No. 4, 164–167 (2004).

2. P. L. Roe, Characteristic based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18, 337–365 (1986).
3. M. S. Liou and C. J. Stefen, A new flux splitting scheme, J. Comput. Phys., 107, 23–39 (1993).
4. M. S. Liou, A sequel to AUSM: AUSM+, J. Comput. Phys., 129, 364–382 (1996).
5. B. Van Leer, Toward the ultimate conservative difference scheme. IV. A second order sequel to Godunov’s

method, J. Comput. Phys., 32, 101–136 (1979).
6. A. E. Emery, An evaluation of several differencing methods for inviscid fluid flow problems, J. Comput. Phys.,

2, 306–331 (1968).

325



7. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J.
Comput. Phys., 54, 115–173 (1984).

8. J. M. Weiss and W. A. Smith, Preconditioning applied to variable and constant density flows, AIAA J., 33, No.
11, 2050–2057 (1995).

9. Fluent Inc. Fluent 6.3 Users Guide, Lebanon (2006).
10. S. A. Pandya, S. Venkateswaran, and T. H. Pulliam, Implementation of Dual-Time Procedures in Overflow,

Technical Report AIAA-2003-0072, American Institute of Aeronautics and Astronautics (2003).
11. P. A. Voinovich and D. M. Sharov, Nonstructured Grids in the Finite-Volumes Method of Calculating Discon-

tinuous Gas Flows. 1. Nonstationary Grids [in Russian], Preprint No. 1534 of the A. F. Ioffe Physicotechnical
Institute, Leningrad (1991).

12. P. A. Voinovich and D. M. Sharov, Nonstructured Grids in the Finite-Volumes Method of Calculating Discon-
tinuous Gas Flows. 2. Nonstationary Local Adaptation [in Russian], Preprint No. 1534 of the A. F. Ioffe Physi-
cotechnical Institute, Leningrad (1991).

13. ANSYS, Inc. Ansys CFX-Solver Modeling Guide, Canonsburg (2006).

326



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [594.000 792.000]
>> setpagedevice


